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EUIREMEI.Y I'N1H)HM EL.CTRODIEPOSITI(N OF SUBMICRON SCHOTTKY CONTRACTS

%n elctroplating te'hniqti ., high-field pulse-plating (ItFPP), has been

dev loped tor iht.iining tinit rm cviwrage ot metals deposited on semiconductor

strt ice,;. l'he techniqut. so lws t problem which has plagued the fabrication of

millimtt er- and sun Illim.t ir-wavt. length Schottky barrier diodes as the diame-

tors .t these devices !La it been redticed to micron and submicron dimensions. 1 - 3

Ideail ;ertormance ()t SIittkv barrier diodes is only achievable if the depos-

ited metal electrode i-; onitormlv in intimate contact to the semiconductor

strtace on a scale which is small compared to the dimtensions of the device.

e report near ideal deposition of plated contacts to n-type GaAs for diame-

ters as small as 1200 A.

The implications of this achievement are considerable. The performane of

high-frequency low-noise receivers depends critically on Schottky barrier type

devices. The electrical behavior of the Schottky diodes fabricated by this

technique implies important improvements in receiver performance at mm and far

infrared wavelengths, a region of interest for applications in communications,

radio astronomy, and precision frequency metrology experiments. This develop-

"'lnt iS as,) necessary for the successttIl tabrication of more complex struc-

ture, ith v, th. -int act arry f, .,h , .i st ructure applicable to both conven-

tional h;si(tit v 1s'r , .'t , vs as well as the super-Schottky diode. 4 , 5

The all-important parasitic power losses of a Schottky barrier mixer or

varactor diode are consumed in the series resistance of the device, and as

such, a reduction in this resistance results in a direct improvement in device

performance. In a well designed Schottky diode where surface and back contact

Impedances are minimized, the series resistance is dominated by the spreading

resistance Rs of the device, the resistance due to the constriction of the

current flow in the semiconductor at the contact. The theoretical value of

the spreading resistance Rs for a contact to a uniformly (nonepitaxial) doped

semiconductor is given by
6

Rs - p/2d (1)

5
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where p is the resistivity of the semiconductor and d is the diameter of the

contact. Values of R. are typically larger than indicted by Eq. (1) because

of poor coverage of the deposited metal. For 0.5-.Ifm diameters, a discrepancy

factor of the order of 3 is observed,2 ,3 and this factor increases as the

diameter is reduced.

The HFPP technique represents a very different approach to the electro-

deposition of metals. Presently used plating methods rely on relatively low

rates of deposition which are controlled by metal ion diffusion mechanisms

within the bath. HFPP utilizes an extremely fast deposition rate which is

controlled by the electric field in the bath very close to the deposition

surface. Deposition rates are 104-105 times faster than with conventional

electroplating (or vapor deposition) methods. The technique requires pulses

of current and voltage which are fast rising, large, and nearly constant in

magnitude, and very short (a few hundred nsec for Pt solutions). The pulses

must also have a low duty cycle to allow time (- 1 msec) for the solution to

relax to a uniform concentration of metal ions near the plated area. The

technique closest experimentally to HFPP is a pulse-plating technique

described by Burrus. 7 His technique is based on relatively long pulses of

current and voltage (e.g., RC discharges), and as such, the plating is a

hybrid combination of pulse and dc plating.

The success of HFPP depends critically upon this high rate of deposition.

Uniform coverage is achieved when the condensed metal crystals on the semi-

conductor are densely packed, a situation that results if the condensed metal

crystals can be forced to nucleate on the semiconductor in a random nonpre-

ferential manner, rather than on fvored sites such as on existing plated

crystallites. Such a nonpreferential process is spontaneous nucleation and

has as a key requirement for its occurrence that the number of atoms at a

potential condensation site exceed a certain critical number.8 Condensed

crystals with less than this number are not stable. Consequently, with ex-

tremely high deposition rates spontaneous nucleation can dominate the conden-

sation, and uniform coverage is the end result. This type of plating is to be

contrasted with dc plating where initial condensation occurs preferentially on

sites more favorable to nucleation, and these sites serve to getter subsequent

6



metal atoms and grow at the expense of new nucleation centers being created.

Fewer nucleation centers (fewer crystals) result in less overall intimate con-

tact between the deposited metal and the semiconductor surface.

This spontaneous nucleation requirement and the kinetics within the

plating bath establish constraints on the width of an applied pulse. Condi-

tions within the solution during an applied pulse are sketched in Fig. 1. A

high electric field E is impressed across a region of depleted metal ions of

width X. This depletion width increases with time and, as a result, the field

E and, hence, the rate of deposition, decrease with time. Since the process

requires a high rate of deposition throughout the entire pulse, the pulse must

be terminated at the subcritical deposition point. This subcritical point

establishes a maximum pulse width for a given pulse voltage. A minimum width

also exists for the pulse, since spontaneous nucleation requires enough metal

be delivered per pulse.

Successful Pt depositions have been obtained using rectangular pulses 25-

35 V in height, 200-nsec long, and a repetition rate of 1000 pulses/sec. De-

position rates of 105 A/sec (J - 2 x 105A/cm2 with £ the order of 1000 A are

commonly experienced. The use of longer pulses or higher duty rates yields

coverage with noticeably larger grain size. At the other extreme, plating

appears not to proceed at all for pulses less than 50 nsec in width. The Pt

plating solution is a commercially produced chloride-based acid solution.
9

Care must be taken during the preplate HC! (concentrated) etch (5 min) and

during the plating operation that the surface is constantly being flushed with

fresh solution. This procedure avoids the formation of H2 gas bubbles; bubble

formation markedly reduces the uniformity of the plated diodes. The 10-A cap-

ability of the pulse generator was sufficient to Pt plate areas as large as

4 x 10- 4 cm2 with extremely uniform coverage. The HFPP process is independent

of the size and shape of the anode electrode, because the effective counter

electrode for the process is the depletion edge of the solution shown in

Fig. 1. A systematic study of the voltage requirements has not been made.

However, as a general rule, large areas require larger applied voltages due to

the area dependency of the resistive potential drop in the "spreading

7
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resistance" region of the solution. All depositions have been done at room

temperature without special controls on the temperature of the bath.

A comparison of the coverage with dc plating and HFPP is shown in Fig. 2

for similar total amounts of deposited Pt metal. Examination of the HFPP

sample indicates crystalline structure of less than 200 A, the resolution ca

pablity of the scanning electron microscope (SEM). Figure 3 illustrates the

improvement in uniformity of Schottky diodes using this technique. The

results shown are typical for d - 0.5 Im.

The measured series resistances obtained from Pt/n-GaAs Schottky barrier

diodes fabricated using this technique are shown in Fig. 4. A moderately low

doping of 4 x 1017 cm- 3 was chosen for the n-GaAs to ensure that the series

resistances would be sufficiently large and, hence, easily measured. The

spread in the Rs values shown represents the range of values obtained from the

measurement of approximately 10 different diodes in an array of identically

produced contracts. After the electrical measurements were taken, the insula-

ting layer was stripped away allowing the base diameters to be measured di-

rectly using an SEM. The uncertainty in the diameter measurements is approxi-

mately ± 5%, as shown. No adjustable parameters are involved in establishing

the theoretical line shown in Fig. 4; it has been drawn using Eq. (1) and an

independently measured value of p obtained from a four-point probe measure-

ment. As shown, both the agreement between theory and experiment and the

small deviations from diode to diode are quite exceptional. The contact array

diode requires diameters as small as 1200 A for efficient high-frequency

detection. These data ensure its success.

Results similar to Fig. 4 have been obtained using plated contacts of Pb,

a desirable metal for super-Schottky diodes.4 , 5 With this metal, longer

pulses (- I psec) are acceptable, because the density of the plating solution

is greater. Denser plating solutions result in smaller metal ion depletion

regions and, hence, larger electric fields at the deposition face for any

instant of time. As a result pulse widths can be longer. Deposition rates of

106 A/sec for Pb are commonly obtained.

9



(a)

L (b)

Fiy. 2. A comparison of the coverages obtained with high-field polse-

plating and dc plating methods. The light areas are plated Pt;

the dark areas are the base GaAs surface. (a) High-field pulse-
plating of Pt. (b) DC plating of Pt.
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DC PLATED HIGH FIELD
PULSE PLATED

Fig. 3. A comparison in the uniformity of the plated diodes. The

diodes are plated through electrolithographicallv produced
winodows i n the in isollat or and conlsis t of a th in Pt plate
fol lowed byv a heavilyv plated mushroom-shaped Aui overplate.

The base diaimeters ot the diodes are 0.5 Lim.
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Fig. 4. Measured series resistance of pulse-plated Au/Pt/n-GaAs diodes
as a function of contact diameter. The theoretical line isobtained using a value of the bulk resistivity p = 4.8 x 10- 3

ohm cm obtained from an independent set of four-point probe
measurements; it is not a fitted curve.
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Figure 5 shows the I-V characteristic of a HFPP 0.25- pm Pt contact on

4 x 101 7 cm - 3 n-GaAs. The exponential region of this characteristic yields a

barrier height of 0.90 eV and an ideality factor n of 1.24. Barrier heights

are typically within ± 0.02 eV over a 128 x 128 array of contacts. The linear

high-current region of the I-V characteristic shown in the inset of Fig. 5

yields a value for Rs of 90 ohms. With respect to leakage currents, this

characteristic is typical of the diodes measured; leakage currents are negli-

gible down to 10-10 A, the limit of our instrumentation.

These submicron Schottky diodes have yielded excellent performance as

mixers and detectors at submillimeter wavelengths, primarily because of their

small junction capacitance. I0 Tested in an open mount, HFPP 0.25-Vn diodes

have demonstrated a heterodyne minimum detectable power of 5 x 10- 17 W/Hz and

a video noise-equivalent power (NEP) of 2 x 10- 9 W/Hz I/ 2 at a wavelength of

119 Jm. Noise measurements on these diodes yield a i/f noise corner frequency

of 50 MHz.

The properties of these deposited films may be useful for other types of

electronic devices. Specifically, these films should be denser and, hence,

more conductive.'1 The conductivity of metal films is a critical parameter in

a variety of high-frequency devices. For instance, with GaAsFET devices, the

resistance of the gate electrode is an important limiting resistive parameter

at high frequencies.

13
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Fig. 5. The I-V charactiristic of a high-field pulse-plated 0.25-um Pt con-
tact on 4 x 10 n-type GaAs at room temperature. The origin of the
linear display of the characteristic shown in the inset has been
displaced to the left to allow a direct measurement of the series
resistance Rs.
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